Modulation of Schlemm's canal endothelial cell stiffness via latrunculin loaded block copolymer micelles.
نویسندگان
چکیده
Increased stiffness of Schlemm's canal endothelial cells (SC cells) is a major contributing factor to the increased pressure characteristic of primary open-angle glaucoma. New treatments for glaucoma are being developed using actin depolymerizers and rho kinase inhibitors to address this increased stiffness. However, these agents have off-target effects and are not as potent as had been hoped. We have developed a micellar nanocarrier assembled from poly(ethylene glycol)-bl-poly(propylene sulfide) copolymers capable of encapsulating latrunculin A (Lat A) with the goal of modulating SC cell stiffness. Lat A-loaded nanocarriers were similar in size and morphology to unloaded poly (ethylene glycol)-bl-poly(propylene sulfide) (PEG-bl-PPS) micelles, loaded Lat A at 62% encapsulation efficiency, and retained loaded Lat A for at least 22 days. The continued functional activity of Lat A following encapsulation within micelles was verified in murine macrophages, which are known to display decreased endocytosis in response to Lat A-dependent cytoskeletal disruption. Endocytic inhibition remained unchanged when comparing equal concentrations of micelle-loaded versus free form Lat A. Uptake of Lat A-loaded micelles by human SC cells was verified in vitro with no sign of cytotoxicity, and modulation of SC cell stiffness was measured by atomic force microscopy. Lat A-loaded micelles significantly decreased SC cell stiffness, which resulted in visible changes in cell morphology as observed by confocal microscopy. Our results demonstrate that PEG-bl-PPS micelles represent a tunable platform for the controlled intracellular delivery of latrunculin. These self-assembled polymeric nanobiomaterials may support the rational design and engineering of delivery systems for the treatment of glaucoma. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018.
منابع مشابه
Nimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies
Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...
متن کاملNimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies
Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...
متن کاملMechanical responsiveness of the endothelial cell of Schlemm's canal: scope, variability and its potential role in controlling aqueous humour outflow.
Primary open-angle glaucoma is associated with elevated intraocular pressure, which in turn is believed to result from impaired outflow of aqueous humour. Aqueous humour outflow passes mainly through the trabecular meshwork (TM) and then through pores formed in the endothelium of Schlemm's canal (SC), which experiences a basal-to-apical pressure gradient. This gradient dramatically deforms the ...
متن کاملAmphiphilic Block Copolymer Nano-micelles: Effect of Length Ratio of the Hydrophilic Block
Block copolymer nano-micelles are especially important in cancer treatment because of their fine dimensions. In this article, three systems of amphiphilic copolymers with similar lengths and different ratios of the hydrophobic and hydrophilic chains are studied using implicit-solvent coarse-grained molecular dynamics simulations. The factor fphil is defined as the ratio of the number...
متن کاملTheranostic Unimolecular Micelles Based on Brush-Shaped Amphiphilic Block Copolymers for Tumor-Targeted Drug Delivery and Positron Emission Tomography Imaging
Brush-shaped amphiphilic block copolymers were conjugated with a monoclonal antibody against CD105 (i.e., TRC105) and a macrocyclic chelator for (64)Cu-labeling to generate multifunctional theranostic unimolecular micelles. The backbone of the brush-shaped amphiphilic block copolymer was poly(2-hydroxyethyl methacrylate) (PHEMA) and the side chains were poly(L-lactide)-poly(ethylene glycol) (PL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره شماره
صفحات -
تاریخ انتشار 2018